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Introduction
•	The clinically available oxazolidinones, linezolid and tedizolid, are 

considered drugs of last resort for the treatment of Gram-positive 
severe infections.

•	Oxazolidinones are mainly used to treat multidrug-resistant 
Gram-positive strains such as methicillin-resistant staphylococci, 
vancomycin-resistant enterococci, and isolates displaying elevated 
minimal inhibitory concentration (MIC) values to daptomycin. 

•	Although the vast majority of Enterococcus spp. remain 
susceptible to oxazolidinones, resistant isolates have been 
reported worldwide. 

•	Ribosomal mutations, including alterations in the oxazolidinone 
binding sites (23S rRNA and L3 and L4 ribosomal proteins), are 
the most common mechanisms of oxazolidinone resistance.

•	However, plasmid-borne resistance genes, such as cfr, cfr(B), 
cfr(C), poxtA and optrA, have been detected as newer mechanisms 
responsible for a decreased susceptibility to either linezolid and/
or tedizolid.

•	We evaluated the epidemiology and resistance mechanisms 
to oxazolidinones in a worldwide collection of linezolid non-
susceptible (NS) Enterococcus faecalis and E. faecium from the 
SENTRY Antimicrobial Surveillance Program. 

•	The mechanisms of resistance to oxazolidinone were evaluated 
by whole genome sequencing on a MiSeq sequencer following the 
manufacturer’s instructions (Illumina, San Diego, CA). 

–	Assembled genomes were subjected to a proprietary software 
(JMI Laboratories) to screen for the presence of cfr, cfr(B), 
cfr(C), optrA, and poxtA genes.

–	DNA sequences associated with the 23S rRNA and ribosomal 
proteins (L3, L4, and L22) were analysed for the presence of 
mutations, as previously described. 

•	These isolates were also subjected to multilocus sequence typing 
(MLST). 

Results
•	Among 18 linezolid-nonsusceptible E. faecalis, the vast majority 

of isolates (83.3%; 15/18) had a linezolid MIC of 4 mg/L 
(intermediate susceptibility per CLSI), whereas other 3 isolates 
had MIC of 8 mg/L or >8 mg/L (resistant per CLSI; Table 2). 

–	All isolates with a linezolid MIC of 4 mg/L (83.3%) were 
considered as susceptible by the EUCAST breakpoint (i.e., 
≤4 mg/L; Table 1).

–	A total of 13 (72.2%) isolates showed tedizolid MIC values of 
0.5 mg/L and were categorized as susceptible based on the 
CLSI breakpoint (i.e. ≤0.5 mg/L) (Tables 1 and 2).

–	All but 1 E. faecalis carried optrA gene (94.4%), and these 
isolates originated mainly from Asia-Pacific (9 isolates; 50%) 
and Europe (6 isolates; 33.3%) (Table 2). 

–	One E. faecalis isolate from Italy had G2576T substitutions in 
the 23S rRNA (Table 2).

•	Ampicillin, vancomycin, and daptomycin inhibited 100.0% of 
E. faecalis isolates at their respective breakpoints (Table 1). 

•	 Twelve clonal complexes (CC) were noted among optrA-carrying 
E. faecalis (Table 2).

•	A total of 12 linezolid-nonsusceptible E. faecium were observed 
per CLSI criteria.

–	A total of 8 isolates (66.7%) had a linezolid MIC of 4 mg/L 
(intermediate susceptibility per CLSI), whereas 4 isolates had 
MIC of 8 mg/L or >8 mg/L (resistant per CLSI; Table 2).

–	A total of 58.3% (7/12) isolates had tedizolid MIC of 0.5 mg/L 
and considered as susceptible based on the CLSI breakpoint 
(i.e, ≤0.5 mg/L; Tables 1 and 2). 

•	All E. faecium isolates were susceptible to daptomycin (MIC, 
≤2 mg/L) when the CLSI dose-dependent breakpoint was applied. 

•	G2576T substitutions were observed in 8 E. faecium isolates 
(66.7%), followed by poxtA (33.3%; 4 isolates), optrA genes 
(16.7%; 2 isolates), and cfr(B) (8.3%; 1 isolate). 

–	Four (50%) E. faecium isolates displaying G2576T amino acid 
substitutions had linezolid MIC of 4 mg/L and were considered 
as susceptible when the linezolid EUCAST breakpoint was 
applied.  

•	E. faecium isolates were mainly recovered from North America 
(7; 58.3%) and Europe (4; 33.3%) and belonged to CC17.

Conclusions
•	The resistance mechanisms for oxazolidinone differed between 

E. faecalis and E. faecium isolates. 

•	G2576T substitutions were the main mechanism for resistance in 
E. faecium isolates, while optrA appeared to be almost ubiquitous 
among the linezolid-nonsusceptible E. faecalis isolates.

•	The EUCAST breakpoint for linezolid and CLSI/EUCAST 
breakpoints for tedizolid may fail to detect Enterococcus isolates 
carrying the resistance mechanisms presented here.

•	 In addition, the E. faecium isolates included in this study may 
represent a continuous selection and expansion of linezolid-
nonsusceptible isolates of a well-established nosocomial 
population (CC17), whereas the clonal diversity among E. faecalis 
may indicate the dissemination capability of optrA-carrying 
plasmids in this species.
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Materials and Methods
Bacterial isolates

•	A total of 30 linezolid-nonsusceptible (MIC, ≥4 mg/L; CLSI 
breakpoint) Enterococcus spp. clinical isolates, including 
18 E. faecalis and 12 E. faecium, were included (Table 1).

•	These isolates collected from 20 medical centres spread across 
Asia-Pacific (10 isolates; 6 medical centres; 6 countries), Europe 
(10 isolates; 6 medical centres; 5 countries), North America 
(9 isolates; 7 medical centres; 1 country), and Latin America 
(1 isolate; 1 medical centre; 1 country) during 2017–2019 
(Figure 1).

•	These isolates were recovered from patients with bloodstream 
infections (BSIs; 10 isolates), skin and skin structure infections 
(SSSIs; 9 isolates), urinary tract infections (UTIs; 8 isolates), 
intra-abdominal infections (IAIs; 2 isolates), and respiratory tract 
infections (RTIs, 1 isolate) (Figure 2).

•	Only isolates determined to be clinically significant by local 
criteria as the reported probable cause of infection were included 
in the program. 

•	All isolates were identified by standard microbiology methods 
and/or MALDI-TOF. 

Susceptibility testing and molecular characterization

•	The broth microdilution method was conducted according to CLSI 
guidelines using 96-well panels manufactured by JMI Laboratories 
(North Liberty, Iowa, USA).

•	Susceptibility was based on EUCAST (2021) and CLSI (2021) 
breakpoint criteria.

Figure 1. Distribution of linezolid-nonsusceptible Enterococcus 
spp. isolates from the SENTRY Surveillance Program  
(2017–2019) by geographic region and country of origin

Figure 2. Linezolid-nonsusceptible Enterococcus 
spp. isolates recovered from SENTRY Surveillance 
Program during 2017–2019 by infection type
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Table 1. Activity of antimicrobial agents tested against linezolid-nonsusceptible E. faecalis and E. faecium isolates from 
SENTRY Surveillance Program (2017–2019)
Antimicrobial agent / No. of isolates

MIC (mg/L) EUCASTa

MIC50 MIC90 %S %R
E. faecalis (18)

Ampicillin 1 1 100.0 0.0 
Daptomycin 0.5 2 100.0 b 0.0 
Levofloxacin 2 >4 50.0 c 50.0 
Linezolid 4 8 83.3 16.7 
Streptomycin (high-level) ≤512 >1024 61.1 38.9 
Tedizolid 0.5 1 72.2 b

Teicoplanin 0.25 0.5 100.0 0.0 
Tigecycline 0.12 0.12 100.0 0.0 
Vancomycin 1 2 100.0 0.0 

E. faecium (12)
Ampicillin >16 >16 0.0 100.0 
Daptomycin 1 2  100.0 d 0.0 
Levofloxacin >4 >4 16.7 c 83.3 
Linezolid 4 >8 66.7 33.3 
Streptomycin (high-level) ≤512 >1024 58.3 41.7 
Tedizolid 0.5 1 58.3 b

Teicoplanin 0.5 >16 58.3 41.7 
Tigecycline 0.06 0.12 91.7 8.3 
Vancomycin 2 >16 58.3 41.7 

a Criteria as published by EUCAST (2021). 
b Using the CLSI (2021) breakpoint. 
c Uncomplicated UTI only.
d Based on a dosage regimen of 8-12 mg/kg (CLSI 2021).

Table 2. Characterization of oxazolidinone resistance mechanisms in linezolid-nonsusceptible E. faecalis and E. faecium 
isolates (2017–2019)

Organism Year Region

 MIC (mg/L)

ST (CC)

Resistance mechanism

Linezolid Tedizolid 
23S rRNA gene/ 
L3-L4-L22 amino 
acid alterations 

methyltransferase 
cfr

ribosomal  
protection poxtA

ribosomal  
protection optrA

E. faecalis 2018 Asia-W. Pacific 4 0.5 16 (CC16) - - - +
E. faecalis 2018 Europe >8 >1 28 (CC28) G2576T - - -
E. faecalis 2017 Latin America 4 0.5 55 (CC55) - - - +
E. faecalis 2018 Asia-W. Pacific 4 1 69 (CC69) - - - +
E. faecalis 2018 Asia-W. Pacific 4 0.5 116 (CC116) - - - +
E. faecalis 2018 Asia-W. Pacific 4 1 116 (CC116) - - - +
E. faecalis 2019 Asia-W. Pacific 4 0.5 179 (CC16) - - - +
E. faecalis 2018 Asia-W. Pacific 4 0.5 207 (CC207) - - - +
E. faecalis 2018 Asia-W. Pacific 4 0.5 444 (CC444) - - - +
E. faecalis 2019 Europe 4 0.5 476 (CC116) - - - +
E. faecalis 2019 Europe 4 0.5 476 (CC116) - - - +
E. faecalis 2019 Europe 4 0.5 476 (CC116) - - - +
E. faecalis 2018 North America 4 0.5 476 (CC116) - - - +
E. faecalis 2018 Asia-W. Pacific 4 0.5 480 (CC480) - - - +
E. faecalis 2019 Europe 4 0.5 480 (CC480) - - - +
E. faecalis 2017 Europe 4 0.5 585 (CC585) - - - +
E. faecalis 2018 Asia-W. Pacific 8 1 958 (CC16) - - - +
E. faecalis 2019 North America 8 1 960 (CC960) - - - +
E. faecium 2017 Europe 4 1 117 (CC17) G2576T - - -
E. faecium 2018 Europe >8 1 80 (CC17) G2576T - - -
E. faecium 2019 Asia-W. Pacific 8 0.5 817 (CC17) G2576T - - -
E. faecium 2019 Europe 4 0.5 18 (CC17) - - + +
E. faecium 2017 Europe 4 0.5 18 (CC17) - - + +
E. faecium 2018 North America 4 0.5 794 (CC17) G2576T cfr(B) - -
E. faecium 2019 North America 4 0.5 18 (CC17) G2576T - - -
E. faecium 2017 North America >8 1 736 (CC17) G2576T - - -
E. faecium 2017 North America 4 0.5 117 (CC17) G2576T - - -
E. faecium 2018 North America 8 1 1523 (CC17) G2576T - - -
E. faecium 2018 North America 4 1 1641 (CC17) - - + -
E. faecium 2018 North America 4 0.5 1641 (CC17) - - + -
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